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Abstract. A survey of two approaches for stabilizing the hierarchical basis (HB) multilevel
preconditioners, both additive and multiplicative, is presented. The first approach is based on the
algebraic extension of the two-level methods, exploiting recursive calls to coarser discretization levels.
These recursive calls can be viewed as inner iterations (at a given discretization level), exploiting the
already defined preconditioner at coarser levels in a polynomially-based inner iteration method. The
latter gives rise to hybrid-type multilevel cycles. This is the so-called (hybrid) algebraic multilevel
iteration (AMLI) method. The second approach is based on a different direct multilevel splitting of
the finite element discretization space. This gives rise to the so-called wavelet multilevel decomposi-
tion based on L2-projections, which in practice must be approximated. Both approaches—the AMLI
one and the one based on approximate wavelet decompositions—lead to optimal relative condition
numbers of the multilevel preconditioners.
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1. Introduction. This paper presents a comprehensive survey of the multi-
level methods, i.e., methods that exploit direct decompositions (that is, consisting
of nonoverlapping coordinate spaces) of the given finite element discretization space.
To be specific, we consider a finite element space V = VJ obtained by successive
steps of uniform refinement of an initial coarse triangulation T0. We denote by Tk
the kth-level triangulation and by Vk the corresponding kth-level discretization space,
k = 0, 1, . . . , J . We consider here standard conforming piecewise polynomial finite el-
ement spaces. This in particular implies that Vk−1 ⊂ Vk, i.e., that we have a nested
sequence of discretization spaces. Finally, we are interested in the following model
second-order elliptic bilinear form:

(1) A(u, ψ) ≡
∫

Ω
A∇u · ∇ψ, where u, ψ ∈ H1

0 (Ω).

Here Ω is a plane polygon or a three-dimensional (3-d) polytope and H1
0 (Ω) is the

standard Sobolev space of L2(Ω)-functions vanishing on the boundary of Ω that have
all first derivatives also in L2(Ω). The given coefficient matrix A = (ai,j(x)), x ∈ Ω,
is symmetric with measurable and bounded entries in Ω, and it is also assumed that
A is positive definite uniformly in Ω.

For the finite element spaces we also assume that Vk admit a Lagrangian (nodal)
basis {φ(k)

i }, where any index i corresponds to a node xi which runs over all the
degrees of freedom in Nk, the node set at the kth discretization level defined from the
triangulation Tk. We denote by hk the kth discretization level mesh size. We assume
that hk = 2−kh0.

∗Received by the editors February 27, 1995; accepted for publication (in revised form) March
28, 1996. This research was partly supported by Bulgarian Ministry of Education, Science and
Technology grant MM-415, 1994 and also in part by National Science Foundation grant NSF-INT
95-06184.

http://www.siam.org/journals/sirev/39-1/28221.html
†Center of Informatics and Computing Technology, Bulgarian Academy of Sciences, “Acad. G.

Bontchev” Street, Block 25A, 1113 Sofia, Bulgaria (panayot@iscbg.acad.bg).

18



HB MULTILEVEL PRECONDITIONING 19

We are interested in the following variationally-posed boundary value problem.
PROBLEM OF MAIN INTEREST. Given f ∈ L2(Ω), find u ∈ H1

0 (Ω) such that

(2) A(u, ψ) = (f, ψ) for all ψ ∈ H1
0 (Ω).

Here and in what follows we denote by (., .) and ‖.‖0 the standard L2-inner prod-
uct and the corresponding L2-norm, respectively.

The remainder of the paper deals with the following topics:
• classical two-level hierarchical basis (HB) methods; the strengthened Cauchy

inequality,
• the HB multilevel methods; additive and multiplicative preconditioning

schemes,
• stabilizing the HB method, I: the algebraic multilevel iteration (AMLI)

method,
• stabilizing the HB method, II: approximate wavelets.

The main goal of this survey is to present in a compact form how far one could go
in developing efficient multilevel preconditioning techniques for solving problem (2)
exploiting direct (or, equivalently, hierarchical) decompositions of the finite element
discretization space V . Here, V = VJ corresponds to the finest triangulation T = TJ
which is obtained by J ≥ 1 successive steps of refinement of the initial (coarse)
triangulation T0.

It is demonstrated in the present paper that using the two approaches described
in a number of papers can lead to optimal or practically optimal order methods for
both 2-d and 3-d problem domains.

The alternative is to consider decompositions of the fine discretization space V
consisting of overlapping components. The latter can lead, for example, to the classical
multigrid (MG) methods or to the overlapping Schwarz methods. For an overview of
these methods we refer to the book of Bramble [13] and the survey papers of Xu [42],
Yserentant [44], Chan and Mathew [15], Dryja, Smith, and Widlund [17], and Griebel
and Oswald [19]. For a classical exposition of MG methods we refer to Hackbusch
[22].

The presentation in this paper is based on the papers of Bank and Dupont [9],
Axelsson and Gustafsson [2], Yserentant [43], Bank, Dupont, and Yserentant [10], Xu
[42], Vassilevski [37], [38], Axelsson and Vassilevski [5], [6], [8], and Vassilevski and
Wang [41].

2. Classical two-level HB methods; strengthened Cauchy inequality.
Here we survey the classical two-level method as proposed by Bank and Dupont [9]
(see also Braess [12]) and studied further by Axelsson and Gustafsson [2]. It is a basic
step of introducing the multilevel preconditioners.

Consider our bilinear form (1),

A(u, v) ≡
∫

Ω

∑
ai,j(x)

∂u

∂xi

∂v

∂xj
,

u, v ∈ V ⊂ H1
0 (Ω).

Given a direct decomposition of the space V ,

V = V1 + V2
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with coordinate subspaces V1, V2. We call this decomposition stable if there exists a
constant γ ∈ [0, 1) such that

(3) A(v1, v2) ≤ γ [A(v1, v1)]
1
2 [A(v2, v2)]

1
2 for all v1 ∈ V1, v2 ∈ V2.

Note that if γ = 0 the above decomposition is A-orthogonal. In practice we are
interested in a constant γ ∈ [0, 1) that is independent of the degrees of freedom of V1
and V2 (or of their respective mesh parameters h1 and h2).

The discretized version of the problem of main interest (2) reads as follows:
For any given right-hand side function f ∈ L2(Ω) find uh ∈ V such that

A(uh, φ) = (f, φ) for all φ ∈ V.

Given also computational bases of {φ(1)
i } of V1 and {φ(2)

i } of V2, the above discrete
problem takes the following block matrix form:[

A11 A12

A21 A22

][
u1

u2

]
} V1

} V2
=

[
f1
f2

]
} V1

} V2
.

Here we seek the solution decomposed as uh = u1 + u2, u1 ∈ V1, and u2 ∈ V2. The
respective coefficient vectors of u1 and u2 with respect to the given computational
bases {φ(1)

i } and {φ(2)
i } are above denoted by u1 and u2, respectively. The blocks of

the stiffness matrix then read as follows:

A11 = {A(φ(1)
j , φ

(1)
i )},

A21 = {A(φ(1)
j , φ

(2)
i )},

A12 = {A(φ(2)
j , φ

(1)
i )}

= AT21,

A22 = {A(φ(2)
j , φ

(2)
i )}.

The classical two-level preconditioning schemes read as follows:
Given two preconditioners (approximations)

M11 to A11

and

M22 to A22 (or to S ≡ A22 −A21A
−1
11 A12),

one then defines the following.
DEFINITION 1 (multiplicative or block Gauss–Seidel preconditioning scheme).

M =

[
M11 0

A21 M22

][
I M−1

11 A12

0 I

]
.

It is clear that to implement one inverse action of M one needs two inverse actions
of M11 and one inverse action of M22 in addition to matrix–vector products with the
(sparse in practice) matrix blocks A21 and A12.
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DEFINITION 2 (additive or block Jacobi preconditioning scheme).

MD =

[
M11 0

0 M22

]
.

To implement one action of M−1
D one needs the inverse actions of M11 and M22.

There is one more way to define a two-level multiplicative (or product) precondi-
tioning scheme; cf. Bank and Dupont [9].

DEFINITION 3 (block Gauss–Seidel-type preconditioning scheme). Consider the
following splitting:

A11 = D11 + L11 + LT11

with L11 a strictly lower triangular part of A11 and D11 a symmetric positive-definite
part of A11. We also assume that D11 is a simple matrix, i.e., that it is an easy-to-
factor or to-solve-systems-with matrix. For example, D11 can be the diagonal of A11.
Also, let B22 be a preconditioner for A22. Then the two-level block Gauss–Seidel-type
preconditioner B is defined as follows:

B =

[
L11 +D11 0

A21 I

][
D−1

11 0

0 B22

][
LT11 +D11 A12

0 I

]
.

Note that in the case L11 = 0, i.e., D11 = A11, B is a special case of the pre-
conditioner defined in Definition 1. It is clear that to implement one inverse action
of B one must solve two systems with D11 and one system of equations with B22 in
addition to some eliminations with the (sparse in practice) blocks A21, A12, L11, and
LT11.

We first formulate the following classical result concerning the two-level precon-
ditioners from Definitions 1 and 2.

THEOREM 1 (see Axelsson and Gustafsson [2]). Assume that

vT1 A11v1 ≤ vT1 M11v1 ≤ (1 + δ1)vT1 A11v1 for all v1,

vT2 A22v2 ≤ vT2 M22v2 ≤ (1 + δ2)vT2 A22v2 for all v2

for some nonnegative constants δ1 and δ2. Then the following spectral equivalence
relations hold:

vTAv ≤ vTMv ≤ 1
1− γ2

{
1 +

1
2

[
δ1 + δ2 +

√
(δ1 − δ2)2 + 4δ1δ2γ2

]}
vTAv for all v.

Similarly, for the block diagonal (Jacobi) preconditioner we have

(1− γ)∆0vTMDv ≤ vTAv ≤ (1 + γ)vTMDv for all v.

Here,

∆0 =
2(1 + γ)
1 + δ2

[
1 + ∆ +

√
(∆− 1)2 + 4∆γ2

]−1
, ∆ =

1 + δ1
1 + δ2

.

Proof. The proof relies on the strengthened Cauchy inequality (3), the spectral
equivalence relations between A11 and M11 and between A22 and M22, and on the
elementary inequality 2ab ≤ ξ−1a2 + ξb2 for an appropriate choice of ξ > 0.

For the multiplicative preconditioner M one has

vT (M −A)v = vT1 (M11 −A11)v1 + vT2 (M22 −A22)v2 + vT2 A21B
−1
11 A12v2·
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This implies the desired left-hand side spectral bound since all terms are nonnegative
by assumption. For the upper bound one gets

vT (M −A)v ≤ vT1 (M11 −A11)v1 + vT2 (M22 −A22)v2 + vT2 A21A
−1
11 A12v2

≤ δ1vT1 A11v1 + δ2vT2 A22v2 + γ2vT2 A22v2

=
δ1

1− ζ−1γ
(1− ζ−1γ)vT1 A11v1 +

δ2
1− ζγ (1− ζγ)vT2 A22v2

+
γ2

1− γ2 vTAv

≤
[

min
ζ∈[γ,γ−1]

max
{

δ1
1− ζ−1γ

,
δ2

1− ζγ

}
+

γ2

1− γ2

]
vTAv.

Here we have used the inequality (a corollary to the strengthened Cauchy inequality
(3))

(4) vTAv ≥ (1− γζ)vT2 A22v2 + (1− γζ−1)vT1 A11v1,

valid for any ζ ∈ [γ, γ−1]. We also used the same inequality for ζ = γ.
Now choosing ζ such that

δ1
1− ζ−1γ

=
δ2

1− ζγ ,

i.e., ζ = δ2−δ1+
√

(δ2−δ1)2+4δ1δ2γ2

2γδ2
, one gets

δ1
1− ζ−1γ

=
δ1 + δ2 +

√
(δ2 − δ1)2 + 4δ1δ2γ2

2(1− γ2)
≤ δ1 + δ2

1− γ2 ,

which implies the desired estimate.
The additive preconditioner MD is analyzed in a similar way. We have

vTAv = vT1 A11v1 + vT2 A22v2 + 2vT1 A12v2

≤ (1 + γ)
[
vT1 A11v1 + vT2 A22v2

]
≤ (1 + γ)

[
vT1 M11v1 + vT2 M22v2

]
= (1 + γ)vTMDv.

For the estimate from below, one has

vTAv ≥ (1− ζγ)vT1 A11v1 + (1− ζ−1γ)vT2 A22v2

≥ 1− ζ−1γ

1 + δ2
vT2 M22v2 +

1− ζγ
1 + δ1

vT1 M11v1

≥ max
ζ∈[γ,γ−1]

min
{

1− ζ−1γ

1 + δ2
,

1− ζγ
1 + δ1

}
vTMDv.

The parameter ζ ∈ [γ, γ−1] is chosen such that

1− ζ−1γ

1 + δ2
=

1− ζγ
1 + δ1

,



HB MULTILEVEL PRECONDITIONING 23

or letting ∆ = 1+δ1
1+δ2

, we have the quadratic equation γζ2 − (1−∆)ζ −∆γ = 0 for ζ.
This gives

ζ =
1−∆ +

√
(∆− 1)2 + 4γ2∆

2γ
.

Thus the desired left-hand side estimate becomes vTAv ≥ ∆0(1− γ)vTMDv with

∆0 =
1− γζ

(1 + δ1)(1− γ)
=

2∆(1 + γ)
1 + δ1

{
1 + ∆ +

√
(∆− 1)2 + 4∆γ2

}−1

≥ 2∆
1 + δ1

{1 + ∆ + |∆− 1|}−1

=
1

1 + max{δ1, δ2}
.

For the two-level preconditioner B from Definition 3 the following well-known re-
sult holds; compare, e.g., Bank and Dupont [9] (see also Bank, Dupont, and Yserentant
[10]).

THEOREM 2. Assume that

vT2 A22v2 ≤ vT2 B22v2 ≤ (1 + b2)vT2 A22v2 for all v2

for some constant b2 ≥ 0. Then the following spectral equivalence relations hold:

vTAv ≤ vTBv ≤ κTLvTAv for all v,

where the constant κTL depends only on γ and b2, on the spectral condition number
of D−1

11 A11, and on the (standard spectral) norm of D−1/2
11 L11D

−1/2
11 (the same as of

D
−1/2
11 LT11D

−1/2
11 ), which is defined for any matrix G by ‖G‖2 = supw

wTGTGw
wTw .

Proof. Let λ
[
D−1

11 A11
]
∈ [σ−1

1 , σ2] and denote ` = ‖D−1/2
11 LT11D

−1/2
11 ‖. The left-

hand side of the desired inequality is seen from the identity

(5)

B −A =

[
(L11 +D11)D−1

11 (LT11 +D11)−A11 (L11 +D11)D−1
11 A12 −A12

A21D
−1
11 (LT11 +D11)−A21 B22 −A22 +A21D

−1
11 A12

]

=

[
0 0

0 B22 −A22

]
+

[
L11D

−1
11 0

0 I

][
D11 A12

A21 A21D
−1
11 A12

][
D−1

11 L
T
11 0

0 I

]

=

[
0 0

0 B22 −A22

]
+

[
L11 0

A21 I

][
D−1

11 0

0 0

][
LT11 A12

0 I

]
,

noting that both last terms are positive semidefinite.
The right-hand side inequality is seen again from the last identity (5) and the

following corollaries from the strengthened Cauchy inequality (letting ζ = γ−1 and
ζ = γ, respectively, in (4))

vT1 A11v1 ≤
1

1− γ2 vTAv for all v =

[
v1

v2

]



24 PANAYOT S. VASSILEVSKI

and

vT2 A22v2 ≤
1

1− γ2 vTAv for all v =

[
v1

v2

]
·

The spectral equivalence relations between B22 and A22 and A11 and D11 and the
norm estimate of D−1/2

11 L11D
−1/2
11 are also used.

Following the classical result for the convergence factor of the symmetric block
Gauss–Seidel preconditioner B11 ≡ (D11 + L11)D−1

11 (D11 + LT11) one has

vT1 A11v1 ≤ vT1 B11v1 ≤ (1 + b1)vT1 A11v1 for all v1,

where b1 ≤ `2σ1.

Identity (5) implies for any v = [
v1
v2

] (letting w1 = D−1
11 L

T
11v1) that

vT (B −A)v = vT2 (B22 −A22)v2 + wT
1 D11w1 + 2wT

1 A12v2 + vT2 A21B
−1
11 A12v2

≤ b2vT2 A22v2 + γ2vT2 A22v2 + wT
1 D11w1 + γζwT

1 A11w1

+γζ−1vT2 A22v2

≤ (b2 + γζ−1)vT2 A22v2 + (σ2γζ + 1)b1vT1 A11v1 + γ2vT2 A22v2(6)

≤ 1
1− γ min

ζ∈(0,∞)
max

{
b2 + γζ−1, (σ2γζ + 1)b1

}
vTAv

+
[

1
1− γ2 − 1

]
vTAv.

Now choose ζ > 0 such that b2ζ + γ = b1(σ2γζ + 1)ζ; i.e.,

ζ =
b2 − b1 +

√
(b1 − b2)2 + 4σ2γ2b1
2b1σ2γ

·

Substituting this value of ζ in (6), the following upper bound for κTL is obtained:

κTL ≤
1

1− γ2 +
1

2(1− γ)

(
b2 + b1 +

√
(b1 − b2)2 + 4σ2γ2b1

)
.

One typical classical example of the two-level preconditioning scheme is based
on the two-level hierarchical basis. Consider a finite element space V = Vh that
corresponds to a quasi-uniform triangulation T = Th obtained by a fixed number of
successive steps of uniform refinement of an initial (coarse) quasi-uniform triangula-
tion T̃ = TH and let Ṽ = VH (= V2) be the corresponding coarse finite element space.
Note that Ṽ ⊂ V . Now introduce the nodal interpolation operator Π = ΠH defined
for any continuous function v as follows: (Πv)(x) = v(x), where x runs over all nodal
degrees of freedom of the coarse triangulation T̃ = TH (= T2). Then the following
stable and direct decomposition of V is of interest:

V = Ṽ + (I −Π)V.

We let V1 ≡ (I − Π)V and V2 = Ṽ . It is well known that the following strengthened
Cauchy inequality holds (compare, e.g., Bank and Dupont [9], Maitre and Musy [24],
or Axelsson and Gustafsson [2]):

A(v1, ṽ) ≤ γ [A(v1, v1)]
1
2 [A(ṽ, ṽ)]

1
2 for all v1 ∈ V1 = (I −Π)V and all ṽ ∈ Ṽ .
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The constant γ = maxT∈T̃ γT , where γT = supv1∈V1, v2∈V2

AT (v1,v2)√
AT (v1,v1)

√
AT (v2,v2)

and

AT (., .) is the restriction of A to the elements T ∈ TH . This means that γ ∈ [0, 1)
can be estimated locally. Explicit expressions and/or numerical estimates of γT are
derived in Maitre and Musy [24], Achchab and Maitre [1], Axelsson and Gustafsson
[2], Vassilevski and Etova [39], Margenov [25], Margenov, Xanthis, and Zikatanov [27],
Eijkhout and Vassilevski [18], and others for various finite element spaces and bilinear
forms A.

There is an equivalent form of the strengthened Cauchy inequality; namely, con-
sider the norm estimate of the local projection operator Π,

A(Πv,Πv) ≤ ηA(v, v) for all v ∈ V.

Then γ =
√

1− 1
η . This is seen from the following inequality:

A(Πv,Πv) ≤ ηA(vt, vt),

where vt = Πv + t(I − Π)w for any real number t and arbitrary v and w, since
Πvt = Π2v + tΠ(I − Π)w = Πv. The latter is true since Π2 = Π. This implies the
positive semidefiniteness of the quadratic form t2A((I−Π)w, (I−Π)w)+2tA(Πv, (I−
Π)w) + (1 − η−1)A(Πv,Πv), which implies that its discriminant is nonnegative, and
this is precisely the strengthened Cauchy inequality

(A(v1, v2))2 ≤
(

1− 1
η

)
A(v1, v1)A(v2, v2) for v1 = (I−Π)w ∈ V1 and v2 = Πv ∈ V2.

The above equivalence was established in Vassilevski [38]. It is well known that for the
nodal interpolation operator Π the above norm bound η depends on H

h ; i.e., η = η
(
H
h

)
(see (10) below). Hence if H

h ≤ C the constant γ will remain bounded away from
unity uniformly with respect to h→ 0.

There is another important feature of the two-level block form of the resulting
stiffness matrix A computed from the two-level HB of V ; namely, using the nodal basis
of the coarse space Ṽ = VH and the nodal basis of V1 (the hierarchical complement
of Ṽ in V ), the first block A11 of the stiffness block matrix is well conditioned (note
that we have assumed that H

h ≤ C). Hence A11 allows for good approximations. A
computationally feasible approximation is a properly scaled (also done element by
element with respect to the elements of TH) diagonal part of A11. This in particular
shows that D11 (the scalar diagonal part of A11) is spectrally equivalent to A11 and
the corresponding spectral equivalence constants can be estimated locally. Similarly,
the spectral norm of D−1/2

11 L11D
−1/2
11 (for L11 see Definition 3) can also be estimated

locally. This norm takes part in the estimates in Theorem 2. In some cases, e.g.,
when bisection refinement is used (cf. Mitchell [29] and also Maubach [28] including
3-d elements), A11 itself is diagonal and hence no further approximation of A11 is
needed.

For the case of rough coefficients (discontinuous or in the presence of anisotropy)
one must take special care of how to approximate A11. Some possibilities are found in
Margenov and Vassilevski [26]; see also Margenov, Xanthis, and Zikatanov [27]. We
next note that the second block A22 is the stiffness matrix Ã ≡ AH computed from
the coarse space VH . It can be approximated by any available preconditioner for the
coarse grid problem. One possibility is also to nest successively the same two-level
procedure and thus to end up with a multilevel HB preconditioning scheme. Another
possibility is just to use a more classical (block) ILU method (if the coarse mesh is
not too fine).
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3. The HB multilevel method; additive and multiplicative precondi-
tioning schemes. The straightforward extension of the two-level HB method by
successively nesting the two-level scheme does not lead to optimal order methods.
For 2-d problems, as proposed in Yserentant [43] and Bank, Dupont, and Yserentant
[10], this gives satisfactory nearly optimal preconditioning methods. For 3-d problems
this is not as attractive; see, e.g., Ong [32].

To define the multilevel HB preconditioning methods one first defines the nodal in-
terpolation operators Πk defined for any continuous function v as follows: (Πkv)(x) =
v(x), where x runs over all nodal degrees of freedom in the kth-level triangulation
Tk ≡ Thk , hk = 1

2hk−1, and h0 = H is the mesh size of the initial (coarse) triangu-
lation. The elements of Tk are obtained by uniformly refining each element of Tk−1
into four congruent ones (in two dimensions).

To analyze the multilevel methods under discussion it is more convenient to use
the HB of V which is defined by induction as follows. Assume that the HB of Vk−1 has
been defined. Then the HB of Vk is defined on the basis of the direct decomposition
of Vk = Vk−1 + (I − Πk−1)Vk by keeping the HB of Vk−1 and adding to it the nodal
basis functions of Vk that correspond to the two-level hierarchical complement V (1)

k ≡
(I −Πk−1)Vk of Vk−1 in Vk.

At discretization level k the HB stiffness matrix A(k) computed from A(., .) and
the HB of Vk admits the following two-level block form:

A(k) =

[
A

(k)
11 A

(k)
12

A
(k)
21 A(k−1)

]
} V (1)

k

} Vk−1
.

Assume now that we have some given symmetric and positive-definite approxima-
tions B(k)

11 to the first blocks A(k)
11 on the diagonal of A(k). Let the following spectral

equivalence relations hold:

vT1 A
(k)
11 v1 ≤ vT1 B

(k)
11 v1 ≤ (1 + b1)vT1 A

(k)
11 v1 for all v1 such that v1 ∈ V (1)

k .

Here, b1 is a nonnegative constant. For any function g ∈ V (1)
k we will denote by g1 its

nodal basis coefficient vector. For any ṽ ∈ Vk−1 we will denote by ṽ its (k−1)th-level
HB coefficient vector, i.e., using the HB of Vk−1.

We can now define the following two multilevel HB preconditioning schemes.
DEFINITION 4 (multiplicative or block Gauss–Seidel HB preconditioning scheme

(Vassilevski [37])). Define M (0) = A(0). For k ≥ 1 assume that M (k−1), the HB
preconditioner for A(k−1), has been defined. Then

M (k) =

[
B

(k)
11 0

A
(k)
21 M (k−1)

][
I B

(k)−1

11 A
(k)
12

0 I

]
} V

(1)
k

} Vk−1
.

DEFINITION 5 (block diagonal or block Jacobi HB preconditioner (Yserentant
[43])).

M
(k)
D =



B
(k)
11 0

B
(k−1)
11

. . .
B

(1)
11

0 A(0)



} V
(1)
k

} V
(1)
k−1

...
} V

(1)
1

} V0

.
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DEFINITION 6 (HBMG preconditioner of Bank, Dupont, and Yserentant [10] or
a multiplicative or block Gauss–Seidel-type HB preconditioner). Assume that A(k)

11 is
split as

A
(k)
11 = D

(k)
11 + L

(k)
11 + L

(k)T

11 ,

where L(k)
11 is a strictly lower triangular part of A(k)

11 and D
(k)
11 is a simple part A(k)

11 .
That is, we assume that D(k)

11 is an easy-to-factor or to-solve-systems matrix (e.g., the
scalar diagonal part of A(k)

11 ). It is also assumed that D(k)
11 is symmetric and positive

definite.
Define B(0) = A(0). For k ≥ 1 assume that B(k−1), the HBMG preconditioner

for A(k−1), has been defined. Then

B(k) =

[
L

(k)
11 +D

(k)
11 0

A
(k)
21 I

][
D

(k)−1

11 0

0 B(k−1)

][
L

(k)T

11 +D
(k)
11 A

(k)
12

0 I

]
} V

(1)
k

} Vk−1
.

The following results hold for 2-d polygonal domains Ω (see Yserentant [43] for
the additive preconditioner, Definition 5 and Vassilevski [37] for the multiplicative
one from Definition 4).

THEOREM 3.

vTA(k)v ≤ vTM (k)v ≤ (1 + Ck2)vTA(k)v for all v such that v ∈ Vk.

Similarly,

C1vTA(k)v ≤ vTM (k)
D v ≤ C2(1 + k2)vTA(k)v for all v such that v ∈ Vk.

The constants C,C1, and C2 are mesh independent (or level independent). Also, these
constants are independent of possible large jumps in the coefficients of the bilinear form
A(., .) if they occur only across the edges of the elements for the coarsest triangulation
T0.

Proof. The proof of the spectral bounds for the multiplicative preconditioner
M (k) is based on the following identity. Given v = v(k), the HB coefficient vector of
any given function v ∈ Vk, starting with s = k down to 1, one successively defines
v(s)

1 as the sth-level nodal coefficient vector of (Πs − Πs−1)v ∈ V
(1)
s and v(s−1) =

v(s)
2 as the (s − 1)th-level HB coefficient vector of Πs−1v. Then the main identity

reads as

(7)
vT (M (k) −A(k))v = v(k)T

1 (B(k)
11 −A

(k)
11 )v(k)

1 + v(k)T

2 (M (k−1) −A(k−1))v(k)
2

+v(k)T

2 A
(k)
21 B

(k)−1

11 A
(k)
12 v(k)

2 .

This immediately implies the left-hand side of the required spectral bound since all
terms are nonnegative (for the term v(k)T

2 (M (k−1) − A(k−1))v(k)
2 this follows by in-

duction recalling that M (0) = A(0)).
For the upper bound, using the above identity (7) recursively, one gets

vT (M (k) −A(k))v =
k∑
s=1

v(s)T

1 (B(s)
11 −A

(s)
11 )v(s)

1 +
k−1∑
s=0

v(s)TA
(s+1)
21 B

(s+1)−1

11 A
(s+1)
12 v(s).
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This identity implies the inequalities

(8)

vT (M (k) −A(k))v ≤ b1
k∑
s=1

v(s)T

1 A
(s)
11 v(s)

1 +
k−1∑
s=0

v(s)TA
(s+1)
21 A

(s+1)−1

11 A
(s+1)
12 v(s)

≤ b1
k∑
s=1

v(s)T

1 A
(s)
11 v(s)

1 +
k−1∑
s=0

v(s)TA(s)v(s).

Here we have used the inequality

v(s)TA
(s+1)
21 A

(s+1)−1

11 A
(s+1)
12 v(s) ≤ v(s)TA(s)v(s) for all v(s),

which follows from the positive definiteness of the Schur complement S(s+1) of the
symmetric positive-definite matrixA(s+1), where S(s+1) ≡ A(s)−A(s+1)

21 A
(s+1)−1

11 A
(s+1)
12 .

To complete the proof we then use the estimates (see (4) with ζ = γ−1 and
A = A(s))

(9)

v(s)T

1 A
(s)
11 v(s)

1 ≤ 1
1− γ2 v(s)TA(s)v(s)

=
1

1− γ2A(Πsv,Πsv)

≤ 1
1− γ2 η

(
hs
hk

)
A(v, v).

The function η represents the energy norm of the nodal interpolation operator Πs;
i.e., for any integers 0 ≤ s ≤ k ≤ J there holds

A(Πsv,Πsv) ≤ η
(
hs
hk

)
A(v, v) for all v ∈ Vk.

It is well known that η has the following behavior (compare, e.g., Yserentant [43],
Ong [32], and Vassilevski [38]) for some mesh-independent constant C:

(10) η(t) =

{
1 + C log t, Ω a 2-d polygon,

1 + C(t− 1), Ω a 3-d polytope.

The constant C can be estimated locally with respect to the elements from the initial
coarse triangulation T0 and hence is independent with respect to possible jumps of
the entries of coefficient matrix A as long as this only occurs across edges (faces) of
the elements of T0. In the present case d = 2; hence η( hshk ) = C(k − s) + 1. Summing
up the last inequalities, (9) leads to the required upper spectral bound. Namely, from
(8), (9), and η( hshk ) = C(k − s) + 1 one gets

vTM (k)v ≤ b1
k∑
s=1

v(s)T

1 A
(s)
11 v(s)

1 +
k∑
s=0

v(s)TA(s)v(s)

≤ (1 + Ck)vTA(k)v +
(

b1
1− γ2 + 1

) k∑
s=1

[1 + C(k − s)] vTA(k)v

≤
{

1 +
[
C + 1 +

b1
1− γ2

]
k + C

(
1 +

b1
1− γ2

)
k(k − 1)

2

}
vTA(k)v

≤ (1 +O(k2))vTA(k)v.
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To prove the bounds in the estimates of the eigenvalues M (k)−1

D A(k) one proceeds
as follows. Given v ∈ Vk with a kth-level HB coefficient vector v, let v1

s = (Πs−Πs−1)v
and vs = Πsv and denote by v(s)

1 the coefficient vector of v1
s and by v(s) the sth-level

HB coefficient vector of vs. Then

vTA(k)v = A(v, v) = A

(
v0 +

k∑
s=1

v1
s , v0 +

k∑
r=1

v1
r

)
≤ 2A(v0, v0) + 2

k∑
s,r=1

A(v1
s , v

1
r).

We now use the following strengthened Cauchy inequality (cf. Yserentant [43]):

(11) A(v1
s , v

1
r) ≤ Cδ|r−s|(A(v1

s , v
1
s))

1
2 (A(v1

r , v
1
r))

1
2 ,

which holds for a constant δ ∈ (0, 1) (δ = 1√
2

for uniform refinement with hs = 1
2hs−1).

This immediately shows the estimate

k∑
r,s=1

A(v1
r , v

1
s) ≤ C 1 + δ

1− δ

k∑
s=1

A(v1
s , v

1
s).

Therefore, one obtains

vTA(k)v = A(v, v) ≤ 2C
1 + δ

1− δ

k∑
s=1

A(v1
s , v

1
s) + 2A(v0, v0)

= 2C
1 + δ

1− δ

k∑
s=1

v(s)T

1 A
(s)
11 v(s)

1 + 2v(0)A(0)v(0)

≤ 2 max
{

1, C
1 + δ

1− δ

}
vTM (k)

D v.

We also have

vTM (k)
D v = v(0)TA(0)v(0) +

k∑
s=1

v(s)T

1 B
(s)
11 v(s)

1

≤ (1 + b1)
k∑
s=1

v(s)T

1 A
(s)
11 v(s)

1 + v(0)TA(0)v(0)

≤ 1 + b1
1− γ2

k∑
s=1

v(s)TA(s)v(s) + v(0)TA(0)v(0)

≤ 1 + b1
1− γ2

k∑
s=1

[1 + C(k − s)]vTA(k)v + (1 + Ck)vTA(k)v

≤
[
1 +

(
C +

1 + b1
1− γ2

)
k + C

1 + b1
1− γ2

k(k − 1)
2

]
vTA(k)v

≤ (1 + Ck2)vTA(k)v.

Note that the latter sum is estimated in the same way as in the case of the multi-
plicative preconditioner M (k). This completes the proof of the theorem.

The hierarchical basis multigrid (HBMG) preconditioner from Definition 6 of
Bank, Dupont, and Yserentant [10] can be analyzed similarly as in Theorem 3. It
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has the same nearly optimal properties (for planar polygonal domains) as the other
two preconditioners from Definition 4 and Definition 5. More specifically, we have
Theorem 4.

THEOREM 4. Consider the HBMG preconditioner B(k) from Definition 6. Then
the following spectral equivalence relations hold:

vTA(k)v ≤ vTB(k)v ≤ (1 + Ck2)vTA(k)v for all v.

The constant C > 0 is mesh independent as well as independent of possible jumps
in the coefficients of A as long as these only occur across edges of elements from the
initial (coarse) triangulation T0.

Proof. Use the identity which is derived similarly as (5),
(12)

B(k)−A(k) =

[
0 0

0 B(k−1) −A(k−1)

]
+

[
L

(k)
11 0

A
(k)
21 I

][
D

(k)−1

11 0

0 0

][
L

(k)T

11 A
(k)
12

0 I

]
.

This first shows (by induction since B(0) = A(0)) that B(k) − A(k) is positive semi-
definite since all terms above are positive semidefinite.

The upper bound of the spectrum of A(k)−1
B(k) is obtained based on the above

identity (12) being used recursively (the notation is the same as in the proof of The-
orem 3); i.e., denoting B(k)

11 = (L(k)
11 +D

(k)
11 )D(k)−1

11 (D(k)
11 + L

(k)T

11 ), one gets

vT (B(k) −A(k))v ≤ v(k)T

2 (B(k−1) −A(k−1))v(k)
2 + v(k)T

1 L
(k)
11 D

(k)−1

11 L
(k)T

11 v(k)
1

+2v(k)T

1 L
(k)
11 D

(k)−1

11 A
(k)
12 v(k)

2 + v(k)T

2 A
(k)
21 B

(k)−1

11 A
(k)
12 v(k)

2

≤ v(k)T

2 (B(k−1) −A(k−1))v(k)
2 + γ2v(k)T

2 A(k−1)v(k)
2

+b1v
(k)T

1 A
(k)
11 v(k)

1 + σ2γζv
(k)T

1 A
(k)
11 v(k)

1 + γζ−1v(k)T

2 A(k−1)v(k)
2

= (γ2 + γζ−1)
k−1∑
s=1

v(s)TA(s)v(s) + (1 + σ2γζ)b1
k∑
s=1

v(s)T

1 A
(s)
11 v(s)

1

≤ Ck2vTA(k)v.

We recall that σ2 ≥ λmax[D(k)−1

11 A
(k)
11 ] and b1 = `2σ1, where σ1 ≥ λmax[A(k)−1

11 D
(k)
11 ]

and ` ≥ ‖D(k)−1/2

11 L
(k)T

11 D
(k)−1/2

11 ‖. These constants (σ1, σ2, and `) are mesh indepen-
dent.

One can make some optimization with respect to ζ ∈ (0,∞), but the result will
still be of the same order, namely, O(k2). This bound is obtained based on estimates
(9) and (10) with η( hshk ) = C(k − s) + 1.

4. Stabilization of the HB method, I: An algebraic approach—the
AMLI method. Here we present the algebraic approach proposed in Axelsson and
Vassilevski [5] for stabilizing the multilevel HB preconditioners. This stabilization
is essential for 3-d problems. A similar approach was proposed in Kuznetsov [23].
That is, the method in [23] also exploits polynomially-based inner iterations (at all
discretization levels) but is only applicable for certain finite difference problems.

Here we need polynomials p(k)
νk (t) of degree νk at every discretization level k that

are properly scaled such that, in the interval (0, 1], the polynomials take values in
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[0, 1) and

p(k)
νk

(0) = 1.

Some practical choices of pν(t) are specified after Definition 9.
We call the AMLI procedure as explained further in this section a stabilization

of the HB method since all the HB multilevel methods from the previous sections are
algebraically modified by introducing polynomially-based inner iterations (at certain
discretization levels), exploiting recursive calls to coarse levels and based on the pre-
conditioners defined by induction at those levels, in an optimal way. This does not
change the nature of the HB methods—that all constants involved in various spectral
relations can be estimated locally (with respect to the elements from the initial trian-
gulation T0). Because of this, the AMLI methods preserve this locality property of the
HB methods and, as a corollary, the resulting constants in the spectral equivalence
relations are independent of possible large jumps in the coefficients of the bilinear
form A(., .) as long as these only occur across element boundaries of elements from
T0.

Also, the name algebraic does not necessarily refer to the algebraic generation of
the coarse discretizations (and the respective coarse-level matrices), but is due to the
polynomials involved in the definition of the multilevel iteration (or cycle). Thus, in
this respect the AMLI methods are different from the algebraic multigrid methods as
studied earlier in [34] and others.

On the other hand, the AMLI methods have much in common with the classical
multigrid methods in the sense that the former are recursively defined from coarser
to finer levels and involve recursive calls to coarser levels. An essential feature of
the AMLI methods is that they allow for recursive calls not necessarily to all coarse
discretization levels and still preserve their optimality property. Avoiding recursive
calls at most discretization levels is important since it results in a less expensive
operation count per preconditioning step. Details regarding the complexity of the
method are found in section 4.6.

This large section is structured as follows.
• AMLI methods that require certain parameters to estimate. We discuss the

minimum eigenvalues of M (k)−1
A(k) at all discretization levels at which re-

cursive calls to previous coarser levels exist. This eigenvalue estimation, as
demonstrated in Vassilevski [38], can be performed adaptively from coarser
to finer levels based on the Lanczos method. The AMLI methods here are
natural extensions of the HB multilevel methods as studied in section 3 for
both types of multiplicative schemes—the HBMG of Bank, Dupont, and
Yserentant [10] (see Definition 6) generalized in Definition 9 below and the
scheme of Vassilevski [37] (see Definition 4) generalized in Definition 7 below.
We also consider a special version of AMLI methods that is based on (ap-
proximate) two-level Schur complements and which has further extensions to
algebraically defined coarse-level matrices (i.e., not generated by successively
refined meshes). This is the so-called Version I AMLI preconditioners as
described in Definition 8. All these AMLI methods have (essentially one) ad-
ditive version, and we present only a parameter-free variant (to avoid a priori
estimation of whatever parameters) of additive AMLI methods in Definition
10 below.
• Parameter-free AMLI methods. The main idea here is to replace the poly-

nomials involved in the recursive definition of the AMLI preconditioners by
conjugate-gradient-type iterations. This, however, leads to nonlinear (and



32 PANAYOT S. VASSILEVSKI

possibly variable-step, i.e., changing from iteration to iteration) mappings,
and therefore one needs to analyze such variable-step nonlinear precondi-
tioned methods. This (additive) AMLI method is introduced in Definition
10 below.

4.1. The AMLI method. We first define the multiplicative or block Gauss–
Seidel AMLI preconditioner.

DEFINITION 7 (the multiplicative or block Gauss–Seidel AMLI preconditioner
(Axelsson and Vassilevski [5], [6] and Vassilevski [38])). Set M (0) = A(0). For k ≥ 1
one defines

M (k) =

[
B

(k)
11 0

A
(k)
21 M̃ (k−1)

][
I B

(k)−1

11 A
(k)
12

0 I

]
} V

(1)
k

} Vk−1
.

Here

(13) M̃ (k−1)−1
=
[
I − p(k−1)

νk−1

(
M (k−1)−1

A(k−1)
)]
A(k−1)−1

.

It is clear that if p ≈ 0 over the spectrum of M (k−1)−1
A(k−1) then M̃ (k−1) ≈

A(k−1); hence M (k) becomes close to a two-level preconditioner for A(k) of the form
defined in Definition 1.

Note that the last expression (13) for M̃ (k−1)−1
can be written so that it does

not contain any inverses of A(k−1). Since p(k−1)
νk−1 (0) = 1, q(t) = 1−p(t)

t (omitting the
super- and subscripts of p) is also a polynomial. Hence

M̃ (k−1)−1
= q(k−1)

νk−1

(
M (k−1)−1

A(k−1)
)
M (k−1)−1

.

However, M̃ (k−1)−1
involves νk−1 times the inverses of M (k−1), the preconditioner

defined recursively on the previous discretization levels.

4.2. Version I AMLI preconditioners. There is one more version of the
AMLI method (see Axelsson and Vassilevski [5]).

DEFINITION 8 (Version I AMLI preconditioners). Let B(k)
11 = D

(k)−1

11 , for an
explicitly given matrix D

(k)
11 , be the given approximation to A

(k)
11 that satisfies the

following spectral equivalence inequalities:

vT1 A
(k)
11 v1 ≤ vT1 B

(k)
11 v1 ≤ (1 + b1)vT1 A

(k)
11 v1 for all v1.

As before, the constant b1 ≥ 0 is assumed mesh (or level) independent.
One then defines the approximate Schur complements S(k)

D whose actions on vec-
tors are inexpensively available:

S
(k)
D = A

(k)
22 −A

(k)
21 D

(k)
11 A

(k)
12 .

Then, letting B(0) = A(0) for k = 1, 2, . . ., one proceeds as follows:

B(k) =

[
D

(k)−1

11 0

A
(k)
21 S̃(k)

][
I D

(k)
11 A

(k)
12

0 I

]
·

Here

S̃(k)−1
=
[
I − pν

(
B(k−1)−1

S
(k)
D

)]
S

(k)−1

D .
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The polynomial pν = p
(k−1)
νk−1 is properly scaled such that pν(0) = 1 and pν takes values

in [0, 1) for t ∈ (0, 1].
We first remark that qν−1 = 1−pν(t)

t is also a polynomial (since pν(0) = 1) and
hence

S̃(k)−1
= qν−1

(
B(k−1)−1

S
(k)
D

)
B(k−1)−1

.

This shows that to compute the inverse actions of S̃(k) one must solve νk−1 systems
with B(k−1), which is of a factored form (but involves possible recursive calls to
previous coarse levels).

It is clear that we may not have the coarse-level matrices A(k) available at all.
Then Definition 8 also works when the coarse-level matrix A(k−1) is defined from
A(k) by letting A(k−1) = S

(k)
D , that is, for algebraically generated coarse-level ma-

trices. This algebraic generation is computationally feasible if D(k)
11 is sparse (e.g.,

diagonal) and if the blocks A(k)
12 and A(k)

21 have a simple structure, such that the prod-
uct A(k)

21 D
(k)
11 A

(k)
12 does not increase the fill-in too much. Then what is left is to define

(e.g., based on the matrix graph) a two-by-two block structure of any successive coarse
matrix A(k−1). For more detail we refer to Axelsson and Neytcheva [3].

4.3. Spectral equivalence properties of the AMLI methods. For practical
purposes, one lets νk = 1 at most of the levels; i.e., there is no recursion involved at
most of the levels. Also, as recently demonstrated by Axelsson and Neytcheva [4] and
Neytcheva [30], [31], one should also choose the coarse discretization sufficiently fine
in order to be able to efficiently implement the method, including on some massively
parallel machines such as CM–200.

The method is of optimal order if proper relation holds between the polynomial
degree ν and the number of consecutive levels k0 at which we do not nest the algorithm
(see relation (20)). This means that only at the levels with index k of multiplicity k0
(i.e., k = sk0, s = 1, 2, . . .) do we use polynomials of degree ν > 1. Originally, the
AMLI method as proposed in Axelsson and Vassilevski [5], [6] corresponded to the
case k0 = 1 which imposed a certain restriction on the constant γ in the strengthened
Cauchy inequality (or, equivalently, on the constant η1) in the sense that the method
has an optimal complexity in this case if

√
η1 =

√
1

1−γ2 < ν < 2d (d = 2 for 2-d
domain Ω and d = 3 for Ω a 3-d polytope). This shows that the AMLI method (for
k0 = 1) will be at least as expensive as a W -cycle multigrid method; i.e., νk ≥ ν ≥ 2.
The general case k0 ≥ 1 was considered and analyzed in Vassilevski [38], where the
optimality of the method from Definition 7 was proven for finite element second-
order elliptic bilinear forms (1), in general, for k0 sufficiently large and νsk0 = ν,
s = 1, 2, . . . , [ Jk0

] properly chosen (such as in (20)). This choice k0 ≥ 1 relaxes the
complexity of the corresponding AMLI methods (since in this case we do not have to
nest the method at all discretization levels).

For the Version I AMLI preconditioner from Definition 8 a similar result holds.
THEOREM 5. Let B(k)

11 = D
(k)−1

11 (it is commonly assumed that D(k)
11 is given

explicitly) be a symmetric positive-definite approximation to A
(k)
11 that satisfies the

uniform spectral equivalence estimates for a mesh- (or level-) independent constant
b1 ≥ 0:

vT1 A
(k)
11 v1 ≤ vT1 B

(k)
11 v1 ≤ (1 + b1)vT1 A

(k)
11 v1 for all v1.
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Given an integer k0 ≥ 1, let νk−1 = 1 for k − 1 6= (s − 1)k0 in Definition 8. Choose

ν >
√
η1ηk0−1

1+b1η1
1+b1

, where ηk0−1 = η( hm
hm+k0−1

), η(.) is defined as in (10), and

η1 = 1
1−γ2 . The constant b1 ≥ 0 takes part in the spectral equivalence relations

between A
(k)
11 and B

(k)
11 . We write shortly ηr = η( hs

hs+r
) (noting that the expression is

independent of s ≥ 0). Also, let α ∈ (0, 1) be sufficiently small such that the following
inequality holds:

1 + b1η1

1 + b1
η1

(1− α̃)ν

α

[
ν∑
r=1

(1 +
√
α̃)ν−r(1−

√
α̃)r−1

]2

(14) ≤ 1
ηk0−1

[
1
α
−
(

1 + (1 + b1η1)
k0∑
s=1

ηs

)] (
α̃ = (1− γ2) α =

α

η1

)
.

Such a sufficiently small α exists since for α→ 0 (after multiplying (14) by α) we have
η1

1+b1η1
1+b1

1
ν2 <

1
ηk0−1

(which has already been assumed). Consider then the Version I

AMLI preconditioner B(k) from Definition 8 for polynomials

p(k−1)
νk−1

(t) =
1 + Tν

(
1+α̃−2t

1−α̃

)
1 + Tν

(
1+α̃
1−α̃

) ,

with νk−1 = ν and k − 1 = (s − 1)k0, s = 1, 2, . . . , [ Jk0
] (the integer part of J

k0
) and

p
(k−1)
νk−1 = 1 − t for all remaining k; i.e., νk−1 = 1 for k − 1 6= (s − 1)k0. Here Tν is

the Chebyshev polynomial of the first kind of degree ν.
Then the following spectral equivalence relations hold:

vTA(k)v ≤ vTB(k)v ≤ 1
α

vTA(k)v for all v.

Note that if b1 = 0, i.e., B(k)
11 = A

(k)
11 , which means that one uses the exact Schur

complements S(k) in Definition 8, the assumption on ν and k0 reads ν > √η1ηk0−1.
In the simplest case k0 = 1 the relation reads ν > 1√

1−γ2
, already shown in Axelsson

and Vassilevski [5]. For the general estimate, letting b1 →∞, one gets the worst-case
relation between ν and k0; namely, ν > η1

√
ηk0−1.

Proof. Given m = (s − 1)k0, consider any k, m < k ≤ min(sk0, J). We have,
noting that S̃(l) = B(l−1) for m+ 1 < l ≤ k,

(15)

vT (B(k) −A(k))v =
k∑

l=m+1

v(l)T

1 (B(l)
11 −A

(l)
11 )v(l)

1

+ v(m)T
(
S̃(m+1) − S(m+1)

D

)
v(m)

+
k∑

l=m+1

v(l−1)TA
(l)
21B

(l)−1

11 A
(l)
12v(l−1).

The notation of the vectors v(l) and v(l)
1 used in (15) is the same as in the proof of

Theorem 3.
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We first see that expression (15) implies the positive semidefiniteness ofB(k)−A(k)

since all terms in (15) are positive semidefinite. For the term containing S̃(m+1) −
S

(m+1)
D this follows from the definition of S̃(m+1) and the choice of pν . The upper

bound of the spectrum of A(k)−1
B(k) is obtained by induction as follows. Assume (by

induction) that λ[A((s−1)k0)−1
B((s−1)k0)] ∈ [1, 1 + δs], where

(16) α ≤ 1
1 + δs

.

We next estimate the spectrum of A(sk0)−1
B(sk0). Note first that A(m) − S(m+1)

D =
A

(m+1)
21 D

(m+1)
11 A

(m+1)
12 , which shows the inequality

(17) vTB(m)v ≥ vTA(m)v ≥ vTS(m+1)
D v.

Therefore, λ[B(m)−1
S

(m+1)
D ] ∈ (0, 1]. Next, one has the inequality

vTA(m)v ≤ η1 inf
w1

[
w1
v

]T
A(m+1)

[
w1
v

]
= η1vT

(
A(m) −A(m+1)

21 A
(m+1)−1

11 A
(m+1)
12

)
v.

This inequality, with η1 = 1
1−γ2 , implies

vTA(m+1)
21 A

(m+1)−1

11 A
(m+1)
12 v ≤ γ2vTA(m)v,

which in turn shows

vT (A(m) − S(m+1)
D )v ≤ vTA(m+1)

21 A
(m+1)−1

11 A
(m+1)
12 v

≤ γ2vTA(m)v.

One then obtains

vTS(m+1)
D v ≥ (1− γ2)vTA(m)v.

This inequality and (16) imply the estimate

λmin

[
B(m)−1

S
(m+1)
D

]
≥ λmin

[
B(m)−1

A(m)
]

(1− γ2) ≥ 1− γ2

1 + δs
·

The latter inequality and estimate (17) show that the spectrum of B(m)−1
S

(m+1)
D is

contained in [ 1−γ2

1+δs
, 1].

Therefore, we get the following estimate:

λ

[(
S

((s−1)k0+1)
D

)−1
S̃((s−1)k0+1)

]
∈ [1, 1 + δ̃s],

where

δ̃s ≤ sup
{

1
1− pν(t)

− 1, t ∈
[

1− γ2

1 + δs
, 1
]}

≤ sup
{

1
1− pν(t)

− 1, t ∈ [α(1− γ2), 1]
}

= sup
{

pν(t)
1− pν(t)

, t ∈ [α̃, 1]
}
.
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Here we have used the fact that [ 1
1+δs

, 1] ⊂ [α, 1] (see (16)). Since

sup
t∈[α̃,1]

∣∣∣∣Tν (1 + α̃− 2t
1− α̃

)∣∣∣∣ = 1,

we obtain

sup{pν(t), t ∈ [α̃, 1]} =
2

1 + Tν

(
1+α̃
1−α̃

)
=

2

1 + 1+q2ν

2qν
, q =

1−
√
α̃

1 +
√
α̃
·

Hence,

(18)

δ̃s ≤
2

Tν

(
1+α̃
1−α̃

)
− 1

=
4qν

(qν − 1)2

=
(1− α̃)ν

α̃

[
ν∑
l=1

(1 +
√
α̃)ν−l(1−

√
α̃)l−1

]2 .

Now using (15) and (4) with ζ = γ and the fact that η1 = 1
1−γ2 , one gets

vT (B(k) −A(k))v ≤ b1
k∑

l=m+1

v(l)T

1 A
(l)
11v(l)

1 + δ̃sv(m)T S
(m+1)
D v(m)

+
k∑

l=m+1

v(l−1)TA
(l)
21A

(l)−1

11 A
(l)
12v(l−1)

≤ b1η1

k∑
l=m+1

v(l)TA(l)v(l) +
k∑

l=m+1

v(l−1)TA(l−1)v(l−1)

+ δ̃sv(m)T S
(m+1)
D v(m).

We next need the following inequality, which is proved based on the spectral
equivalence relation between A

(m+1)
11 and B

(m+1)
11 , the fact that S(m+1) is a Schur

complement of A(m+1), and the definition of η1 = η( hm
hm+1

):

v(m)T S
(m+1)
D v(m) = v(m)T (A(m) −A(m+1)

21 B
(m+1)−1

11 A
(m+1)
12 )v(m)

≤ v(m)TA(m)v(m) − 1
b1 + 1

v(m)TA
(m+1)
21 A

(m+1)−1

11 A
(m+1)
12 v(m)

=
b1

1 + b1
v(m)TA(m)v(m) +

1
1 + b1

v(m)T S(m+1)v(m)

≤ 1 + b1η1

1 + b1
v(m+1)TA(m+1)v(m+1).
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The last two inequalities (for vT (B(k) − A(k))v and v(m)T S
(m+1)
D v(m)) and the

definition of ηl = η( hs
hs+l

) imply

vT (B(k) −A(k))v ≤ b1η1

k∑
l=m+1

v(l)TA(l)v(l) +
k∑

l=m+1

v(l−1)TA(l−1)v(l−1)

+δ̃s
1 + b1η1

1 + b1
v(m+1)TA(m+1)v(m+1)

≤
[

(1 + b1η1)
k−1∑
l=m

ηk−l + δ̃s
1 + b1η1

1 + b1
ηk−m−1

]
v(k)TA(k)v(k)

≤
[

(1 + b1η1)
k0∑
l=1

ηl + δ̃s
1 + b1η1

1 + b1
ηk0−1

]
vTA(k)v

≤

(1 + b1η1)
k0∑
l=1

ηl + ηk0−1
1 + b1η1

1 + b1

(1− α̃)ν

α̃

[
ν∑
l=1

(1 +
√
α̃)ν−l(1−

√
α̃)l−1

]2


× vTA(k)v

≤
(

1
α
− 1
)

vTA(k)v.

The last inequality is obtained using (18) and (14).
Therefore, we have established that

1 + δs+1 ≤
1
α

or α ≤ 1
1 + δs+1

,

which confirms the induction assumption (16) for s := s+ 1.

4.4. The HBMG–AMLI method. The HBMG preconditioner from Defini-
tion 6 can be similarly stabilized. For the case k0 = 1 the above polynomial-type
stabilization of the HBMG method was exploited by Guo [21] (although in this case
(k0 = 1) the proof in [21] of the complexity of the method was not actually as sat-
isfactory). Here we consider the more general case k0 ≥ 1, which is more practical
since it does not require nesting the algorithm at all discretization levels and still is
able to achieve both optimal relative condition number and optimal complexity of the
corresponding AMLI preconditioners.

DEFINITION 9 (multiplicative or block Gauss–Seidel HBMG–AMLI precondition-
ing scheme). Assume that A(k)

11 is split as

A
(k)
11 = D

(k)
11 + L

(k)
11 + L

(k)T

11 ,

where L(k)
11 is a strictly lower triangular part of A(k)

11 and D(k)
11 is a simple part of A(k)

11 ;
i.e., D(k)

11 is an easy-to-factor or to-solve-systems matrix (e.g., the scalar diagonal part
of A(k)

11 ). It is also assumed that D(k)
11 is symmetric and positive definite.
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Define B(0) = A(0). For k ≥ 1 assume by induction that B(k−1), the HBMG–
AMLI preconditioner for A(k−1), has been defined. Then

B(k) =

[
L

(k)
11 +D

(k)
11 0

A
(k)
21 I

][
D

(k)−1

11 0

0 B̃(k−1)

][
L

(k)T

11 +D
(k)
11 A

(k)
12

0 I

]
} V

(1)
k

} Vk−1
.

Here

B̃(k−1)−1
=
[
I − p(k−1)

νk−1

(
B(k−1)−1

A(k−1)
)]
A(k−1)−1

.

The polynomials p(k)
νk are as in Definition 5; i.e., p(k)

νk are properly scaled such
that, in the interval (0, 1], the polynomials take values in [0, 1) and

p(k)
νk

(0) = 1.

For practical purposes νk = 1 at most of the levels k. A simple choice is pν(t) =
(1− t)ν , while a more complicated one is

pν(t) =
1 + Tν

(
1+α−2t

1−α

)
1 + Tν

(
1+α
1−α

) ,

where α ∈ (0, 1] is such that α ≤ λmin[B(k)−1
A(k)]. Here Tν is the Chebyshev poly-

nomial of the first kind of degree ν. The last choice of pν(t) requires estimates of the
parameter α = αk (i.e., of the minimum eigenvalue of B(k)−1

A(k)). As was demon-
strated in Vassilevski [38], this can be done adaptively. Alternatively, one could
use inner iterations by a conjugate-gradient-type iteration method with a variable-
step preconditioner (i.e., a nonlinear preconditioner). In this way one ends up with a
variable-step AMLI preconditioner which is a nonlinear mapping. This preconditioner
was introduced and analyzed in Axelsson and Vassilevski [8] and is defined below (see
Definition 10).

To analyze the HBMG–AMLI method (using the same notation as introduced in
the proof of Theorem 5, i.e., letting m = (s − 1)k0 and k : m < k ≤ min(sk0, J)), a
starting point is an identity similar to (12) and the inequalities which it implies. We
have, for any ζ > 0,

vT (B(k) −A(k))v ≤ v(k)T

2 (B̃(k−1) −A(k−1))v(k)
2 + v(k)T

1 L
(k)
11 D

(k)−1

11 L
(k)T

11 v(k)
1

+2v(k)T

1 L
(k)
11 D

(k)−1

11 A
(k)
12 v(k)

2 + v(k)T

2 A
(k)
21 B

(k)−1

11 A
(k)
12 v(k)

2

≤ v(k)T

2 (B̃(k−1) −A(k−1))v(k)
2 + γ2v(k)T

2 A(k−1)v(k)
2

+b1v
(k)T

1 A
(k)
11 v(k)

1 + σ2γζv
(k)T

1 A
(k)
11 v(k)

1 + γζ−1v(k)T

2 A(k−1)v(k)
2 .

The latter inequality, used recursively, implies

(19)

vT (B(k) −A(k))v ≤ (γ2 + γζ−1)
k−1∑

l=m+1

v(l)TA(l)v(l)

+(1 + σ2γζ)b1
k∑

l=m+1

v(l)T

1 A
(l)
11v(l)

1 + v(m)T (B̃(m) −A(m))v(m).
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We recall that σ2 ≥ λmax[D(k)−1

11 A
(k)
11 ] and b1 = `2σ1, where σ1 ≥ λmax[A(k)−1

11 D
(k)
11 ]

and ` ≥ ‖D(k)−1/2

11 L
(k)T

11 D
(k)−1/2

11 ‖. These constants (σ1, σ2, and `) are mesh indepen-
dent.

The term

v(m)T (B̃(m) −A(m))v(m)

is estimated similarly as in the proof of Theorem 5. One gets, assuming (16) (where
δs is such that λ[A((s−1)k0)−1

B((s−1)k0)] ∈ [1, 1 + δs]), that

λ
[
A((s−1)k0)−1

B̃((s−1)k0)
]
∈ [1, 1 + δ̃s],

where

δ̃s ≤ sup
{

1
1− pν(t)

− 1, t ∈
[

1
1 + δs

, 1
]}

≤ sup
{

1
1− pν(t)

− 1, t ∈ [α, 1]
}

= sup
{

pν(t)
1− pν(t)

, t ∈ [α, 1]
}
.

In the same way as in the proof of Theorem 5, one then proves (18). Then (19)
together with (18), the definition of ηl (introduced in the formulation of Theorem 5),
and inequality (4) used for ζ = γ leads us to

vT (B(k) −A(k))v ≤ (γ2 + γζ−1)
k−1∑

l=m+1

v(l)TA(l)v(l)

+(1 + σ2γζ)b1η1

k∑
l=m+1

v(l)TA(l)v(l) + δ̃sv(m)TA(m)v(m)

≤ ηk0

(1− α)ν

α

[
ν∑
l=1

(1 +
√
α)ν−l(1−

√
α)l−1

]2 vTA(k)v

+
[
γ2 + γζ−1 + (1 + σ2γζ)b1η1

]( k0∑
l=1

ηl

)
vTA(k)v

≤
(

1
α
− 1
)

vTA(k)v.

The last inequality holds for sufficiently small α ∈ (0, 1] if ν > √ηk0 . Therefore, we
have proven the following theorem.

THEOREM 6. The HBMG–AMLI method from Definition 9 gives spectrally equiv-
alent preconditioners to A(k) provided pν are chosen as properly scaled and shifted
Chebyshev polynomials with ν >

√
ηk0 , and this is only at the levels with indices of

multiplicity k0. More precisely, let α ∈ (0, 1] be sufficiently small such that

ηk0

(1− α)ν

α

[
ν∑
l=1

(1 +
√
α)ν−l(1−

√
α)l−1

]2 +1+
[
γ2 + γζ−1 + (1 + σ2γζ)b1η1

]( k0∑
l=1

ηl

)
≤ 1
α
.
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Here ζ is any fixed positive parameter and γ =
√

1− 1
η1

. Then the following spectral
equivalence relations hold:

vTA(k)v ≤ vTB(k)v ≤ 1
α

vTA(k)v for all v.

4.5. Variable-step AMLI methods. To introduce the variable-step AMLI
method from Axelsson and Vassilevski [8] we first define a variable-step preconditioned
conjugate-gradient method for solving the system

Ax = b.

Here A is a given symmetric positive-definite matrix. Let B[.] be a given, generally
nonlinear, mapping that satisfies the following estimates.

• Coercivity estimate:

vTB[v] ≥ δ1vTA−1v

for some positive constant δ1.
• Boundedness estimate:

(B[v])TAB[v] ≤ δ2
2vTA−1v

for some positive constant δ2.
ALGORITHM (variable-step conjugate-gradient method).
(0) initiate

x = x0 −initial iterate;

r = r0 = b−Ax0 – initial residual;

d = d0 = B[r0] – initial search direction;

(i) For i = 0, 1, . . . , ν compute

g = Ad;

γ = dTg;

α = 1
γ rTd;

x = x + αd;

r = r− αg;

r̃ = B[r];

g = Ar̃;

β = 1
γgTd;

d = r̃− βd;

(ii) End.
It is not as hard to show (see, e.g., Axelsson and Vassilevski [7]) the following

steepest descent rate of convergence:

‖b−Axν‖A−1 ≤

√1−
(
δ1
δ2

)2
ν

‖b‖A−1 ·

Here xi is the ith iterate and we have assumed x0 = 0.
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We are now in a position to define the variable-step AMLI preconditioner.
DEFINITION 10 (variable-step AMLI preconditioner (Axelsson and Vassilevski

[8])). Given an integer parameter k0 ≥ 1, use the block partitioning as in Definition 5
to define

M (k0) =


B

(k0)−1

11 0 0

0
. . . . . .

. . . B
(1)−1

11 0

0 0 A(0)−1

 .

For m = (s − 1)k0 + 1, . . . ,min(J, sk0), k = (s − 1)k0, and s = 2, 3, . . . one further
defines

M (m)[·] =



B
(m)−1

11 0 0

0 B
(m−1)−1

11 0
. . . . . . . . .

0 B
(k+1)−1

11 0

0 0 M̃
(k)
ν [.]


,

where M̃
(k)
ν [b], for any given b, is defined by applying ν steps of the algorithm to

solve the system

A(k)x = b,

using M (k)[.] (already defined at the previous coarse levels by recursion) as a variable-
step preconditioner and x0 = 0 as an initial iterate. Then M̃

(k)
ν [b] = xν , the νth

iterate.
The method was analyzed in Axelsson and Vassilevski [8] and the following result

proven.
THEOREM 7. Assume that ν, the number of inner variable-step preconditioned

conjugate-gradient iterations, is sufficiently large such that for any given fixed ε ∈
(0, 1),

ν ≥ log ε2

log
[
1−

(
1−ε
1+ε

)2
(CHk0)−2

] = O(H2
k0

)
(

1 + ε

1− ε

)2

log ε−2, k0 →∞.

Here C is a constant coming from the strengthened Cauchy inequality (11) and Hk0 =
η1
∑k0
l=1 ηl+ηk0 . The constants {ηl} are introduced in Theorem 5. In other words, let

ν be sufficiently large such that (we assume here that hs
hs+1

= 2; hs is the mesh size at
the sth discretization level)

ν ≥
{

Ck4
0 for a 2-d domain Ω,

C22k0 for a 3-d domain Ω,

where C depends on ε (which is fixed) and on other fixed parameters, but is independent
of k0. Then for s = 1, 2, . . . , [ Jk0

] the following uniform estimates hold:

‖A(sk0)M (sk0)[v]‖
A(sk0)−1 ≤ δ2‖v‖A(sk0)−1
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for a constant δ2 ≤ C−1
1 (1 + ε), where C1 is the constant from Theorem 3 (related

to the strengthened Cauchy inequality (11)). The latter represents the boundedness
estimate. Similarly,

vTM (sk0)[v] ≥ δ1vTA(sk0)−1
v,

where δ1 = 1−ε
Hk0

, which represents the uniform coercivity estimate.

4.6. Complexity of the AMLI methods. To complete this large section, we
must investigate the complexity of all stabilized HB multilevel preconditioners, i.e.,
the AMLI-type preconditioners from Definitions 7–10. Assume that we are in the
setting (and the notation) of Theorem 3. Let nk denote the number of degrees of
freedom at the kth discretization level. We also assume uniform refinement. Then
one has

nk+1

nk
= 2d +O(2−k).

This implies that

nk+1 = O
(
(2d)kn1

)
.

Let the cost of evaluating the action of B(k)−1

11 be of order O(nk−nk−1) arithmetic op-
erations. Similarly, the actions of A(k)

21 and A(k)
12 require order O(nk−nk−1) operations

and one action of A(k) has a cost of order O(nk) operations. Then, to implement one
action of B̃(k)−1

(based on a polynomial pν(t) of degree ν), one must solve ν systems
with B(k) and perform ν − 1 actions of A(k). Denoting by Ws the cost of solving one
system with B(sk0), one then has the recurrence

Ws+1 ≤ νWs + C(n(s+1)k0 − nsk0) + (ν − 1)Cnsk0

≤ νWs + Cnsk0

≤ C
s−1∑
σ=0

νσn(s−σ+1)k0 + νsW1

= C

s−1∑
σ=0

νσ
(
2d
)(s−σ+1)k0−1

n1 + νsW1

= Cn1
(
2d
)(s+1)k0−1

s−1∑
σ=0

( ν

2dk0

)σ
+ νsW1

≤ n(s+1)k0

[
C
s−1∑
σ=0

( ν

2dk0

)σ
+
W1

nk0

( ν

2dk0

)s]
.

Then, if ν
2dk0

< 1, one gets

Ws+1

n(s+1)k0

≤ C +
W1

nk0

.

That is, the asymptotic work estimate shows that the AMLI preconditioners would
be of optimal order if ν satisfied the inequality

ν > C
√
ηk0 (from the spectral equivalence estimates; cf. Theorems 5 and 6),
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or for the variable-step AMLI preconditioner (cf. Theorem 7),

ν > CH2
k0

=

{
Ck4

k0
for a 2-d domain Ω,

C22k0 for a 3-d domain Ω,

and for all AMLI preconditioners,

ν

2dk0
< 1 (from the complexity requirement).

Based on the asymptotic behavior of ηk0 (see (10)), the restrictions on ν read as
follows (except for the variable-step preconditioner):

(20) 2dk0 > ν > C
√
ηk0 =

{
O(
√
k0), d = 2, for Ω a plane polygon,

O(2
k0
2 ), d = 3, for Ω a 3-d polytope.

It is clear then that asymptotically, for k0 sufficiently large, both inequalities for ν
can be satisfied for both 2-d and 3-d problem domains.

For the variable-step AMLI preconditioner the relation between ν and k0 reads
as follows:

(21) 2dk0 > ν >

{
Ck4

0, d = 2, for Ω a plane polygon,

C22k0 , d = 3, for Ω a 3-d polytope.

It is then again clear that for k0 sufficiently large there is a ν such that relation (21)
can be satisfied for both 2-d and 3-d problem domains.

Hence one may summarize as follows.
THEOREM 8. The AMLI stabilized HB multilevel preconditioners from Defi-

nitions 7–10 give optimal order methods; that is, the corresponding preconditioned
conjugate-gradient methods (variable-step conjugate-gradient methods in the case of
Definition 10) have convergence rate bounded independently of the mesh size (or num-
ber of discretization levels) and one iteration step costs a number of arithmetic op-
erations of order of the number of unknowns if, in general, k0 is sufficiently large
and ν (the polynomial degree or the number of inner conjugate-gradient iterations) is
properly chosen with respect to k0, that is, to satisfy relation (20) or (21).

Since the AMLI preconditioners are implicitly defined and use recursive calls to a
number of coarse levels, their implementation is a bit more involved. Implementation
details can be found in Vassilevski [38], Axelsson and Vassilevski [8], and in Axels-
son and Neytcheva [3], [4], and on massively parallel computers such as CM–200 in
Neytcheva [30], [31].

5. Stabilizing the HB method, II: Approximate wavelets. There is an
alternative way to stabilize the HB multilevel preconditioners. We have the option of
changing the nodal interpolation operator Πk. Similarly to the additive MG method
(also called the BPX method; cf. Bramble, Pasciak, and Xu [14]), a good choice turns
out to be the L2-projection operators Qk acting from L2(Ω) to Vk defined by

(Qkv, ψ) = (v, ψ) for all ψ ∈ Vk.

Note that this involves the solution of mass matrix problems which are well condi-
tioned. In what follows we will need only some good approximations to Qk provided
by a few steps of the polynomial iteration method applied to the above system. For
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example, if v has a local support, the approximation provided as just explained will
also have a local support (depending upon the number of iterations performed with
the given polynomial iteration method). See Figures 1 and 2.

The results here are based on a joint report of Vassilevski and Wang [41].
Now introduce the decomposition

Vk = (I −Qk−1)Vk + Vk−1.

Note that this is a direct decomposition. Also, observe that

V 1
k ≡ (I −Qk−1)Vk = (I −Qk−1)(Πk −Πk−1)Vk

since (I −Qk−1)Πk−1 = 0. That is,

V 1
k = (I −Qk−1)V (1)

k ,

which can be viewed as a modification of the HB component V (1)
k = (Πk − Πk−1)Vk

of Vk. The modification comes from the term Qk−1V
(1)
k . That is, the difference with

the HB decomposition is that we project in L2-sense the HB component V (1)
k onto

the next coarse space Vk−1. This provides us with a more stable decomposition of V .
Specifically, we consider the decomposition

V = V0 + V 1
1 + · · ·+ V 1

J ,

where J ≥ 1 is the finest discretization level.
It is now more convenient to use operator function notation. To this end we define

the following solution operators:
• A(k) : Vk → Vk by

(A(k)ψ, θ) = A(ψ, θ) for all ψ, θ ∈ Vk;

• A(k)
11 : V 1

k → V 1
k by

(A(k)
11 ψ

1, φ1) = A(φ1, ψ1) for all φ1, ψ1 ∈ V 1
k ·

Similarly, we define the following operators:
• A(k)

12 : Vk−1 → V 1
k and A

(k)
21 : V 1

k → Vk−1 by

(A(k)
12 ψ̃, φ

1) = A(ψ̃, φ1) for all ψ̃ ∈ Vk−1 and all φ1 ∈ V 1
k ,

(A(k)
21 φ

1, ψ̃) = A(φ1, ψ̃) for all φ1 ∈ V 1
k and all ψ̃ ∈ Vk−1.

Then the solution operator A(k) admits the two-by-two block form

A(k) =

[
A

(k)
11 A

(k)
12

A
(k)
21 A(k−1)

]
} V 1

k

} Vk−1
·

5.1. Assumptions and preliminaries. We emphasize the following well-known
stability estimate:

(22) A(Qkv,Qkv) ≤ ηA(v, v) for any v ∈ VJ ⊂ H1
0 (Ω).

The constant η is uniformly bounded with respect to (J − k)→∞.
From now on we assume that the following basic norm equivalence estimate holds;

namely,
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• there exists a constant σN such that

(a.i) |Q0v|21 +
J∑
j=1

h−2
j ‖(Qj −Qj−1)v‖20 ≤ σN |v|21 for any v ∈ V = VJ .

The above estimate is shown, e.g., in Oswald [33]; see also Dahmen and Kunoth
[16]. For a more detailed derivation of such stability estimates we refer the reader to
Bornemann and Yserentant [11].

For the following analysis we will need the strengthened Cauchy–Schwarz inequal-
ity valid for entries in the finite element spaces Vi and Vj (see, e.g., Yserentant [44],
Xu [42]; an equivalent result is also used in Vassilevski and Wang [40]):

• there exists a positive constant σI such that with δ = 1√
2

for any i ≤ j there
holds

(a.ii) (a(ψi, ψj))
2 ≤ σIδ2(j−i)a(ψi, ψi)λj‖ψj‖20 for all ψi ∈ Vi and ψj ∈ Vj .

Note that we have assumed hi = 1
2hi−1 and λj ≡ λmax[A(j)] = O(h−2

j ).
The following estimate plays a major role in the analysis of the method.
LEMMA 1. Assume that (a.i) and (a.ii) hold. For any v ∈ Vk and s = k down to

1, denote v(s) = Qsv, v(s)
1 = (Qs −Qs−1)v, and v(s)

2 = v(s) − v(s)
1 = Qs−1v. Then the

following inequalities hold:

(23)

k∑
s=1

λ−1
s ‖A

(s)
12 v

(s)
2 ‖20 ≤

k∑
s=1

λ−1
s ‖A(s)v

(s)
2 ‖20

=
k∑
s=1

λ−1
s ‖A(s)Qs−1v‖20

≤ CA(v, v) for any v ∈ Vk.

Proof. First note that A(s)
12 = (Qs−Qs−1)A(s)Qs−1. Hence, ‖A(s)

12 ψ̃‖0 ≤ ‖A(s)ψ̃‖0
for any ψ̃ ∈ Vs−1. Next, use the decomposition

v
(j)
2 = Qj−1v =

j−1∑
s=0

v
(s)
1 , v

(s)
1 = (Qs −Qs−1)v (Q−1 = 0, i.e., v

(0)
1 = Q0v).

Introducing the operators

Tj = λ−1
j A(j),

we get the representation

λ−1
j (A(j)v

(j)
2 , A(j)v

(j)
2 ) = A(Tjv

(j)
2 , v

(j)
2 ) =

j−1∑
s=0

A(Tjv
(j)
2 , v

(s)
1 ).

Now, using the strengthened Cauchy–Schwarz inequality (a.ii) (note that s ≤ j), we
get

|A(Tjv
(j)
2 , v

(s)
1 )|2 ≤ σ2

Iδ
2(j−s) A(v(s)

1 , v
(s)
1 ) λj‖Tjv(j)

2 ‖20

= σ2
Iδ

2(j−s) A(v(s)
1 , v

(s)
1 ) λ−1

j (A(j)v
(j)
2 , A(j)v

(j)
2 )

= σ2
Iδ

2(j−s) A(v(s)
1 , v

(s)
1 ) A(Tjv

(j)
2 , v

(j)
2 ).



46 PANAYOT S. VASSILEVSKI

Therefore, substituting the last inequality into the preceding identity, we get

A(Tjv
(j)
2 , v

(j)
2 ) ≤ σ2

I

[
j−1∑
s=0

δj−s
[
A(v(s)

1 , v
(s)
1 )
] 1

2

]2

·

Applying the Cauchy–Schwarz inequality, we arrive at

A(Tjv
(j)
2 , v

(j)
2 ) ≤ σ2

I

δ

1− δ

j−1∑
s=0

δj−sA(v(s)
1 , v

(s)
1 ).

Summing over j yields

(24)

k∑
j=1

λ−1
j ‖A(j)v

(j)
2 ‖20 =

k∑
j=1

A(Tjv
(j)
2 , v

(j)
2 )

≤ σ2
I

δ

1− δ

k∑
j=1

j−1∑
s=0

δj−sA(v(s)
1 , v

(s)
1 )

≤ σ2
I

(
δ

1− δ

)2 k−1∑
s=0

A(v(s)
1 , v

(s)
1 )

= σ2
I

(
δ

1− δ

)2
[
A(Q0v,Q0v)

+
k−1∑
s=1

A((Qs −Qs−1)v, (Qs −Qs−1)v)

]
,

which together with the basic norm equivalence estimate (a.i) completes the proof.
Thus estimate (23) has been verified.

5.2. Definition of the wavelet modified HB preconditioner.
DEFINITION 11 (multiplicative or block Gauss–Seidel wavelet modified HB mul-

tilevel preconditioner). Let M (0) = A(0). For k ≥ 1,

M (k) =

[
B

(k)
11 0

A
(k)
21 M (k−1)

][
I B

(k)−1

11 A
(k)
12

0 I

]
} V 1

k

} Vk−1
.

Here B(k)
11 are given symmetric positive-definite approximations to the solution oper-

ators A(k)
11 defined on the spaces V 1

k .
Remark 1. The difficulty with the above preconditioner from Definition 11 is

that there is no computationally feasible basis of V 1
k since the wavelet bases for finite

element spaces have nonlocal support. Hence a natural step is instead to use approx-
imate L2-projection operators Qak. Then (I − Qak−1)(Πk − Πk−1)φ1, when φ1 runs
over the nodal basis of V (1)

k = (Πk − Πk−1)Vk, will form a basis of V 1
k with locally

supported functions if Qak−1φ
1 has a local support. This will be the case if Qak−1φ

1

corresponds to a fixed number of iterations of the polynomial iterative method for
solving the mass matrix equation

(Qk−1φ
1, θ) = (φ1, θ) for all θ ∈ Vk−1.
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FIG. 1. Plot of an HB function (no modification).

In Figure 1 we show a typical plot of a nodal basis function φ1. Its wavelet-like
modification, obtained by approximately solving the above mass matrix equation using
m = 2 steps of the conjugate-gradient method, is shown in Figure 2.

5.3. Approximate wavelet modified HB methods. Here we assume that
there is an approximation Qak of Qk such that

(25) ‖(Qk −Qak)v‖L2(Ω) ≤ τ‖Qkv‖L2(Ω) for all v ∈ L2(Ω).

The constant τ is assumed sufficiently small (see (27) below). We stress that τ is
assumed independent of the mesh size or of the number of levels J .

We consider the spaces

V 1
k = (I −Qak−1)(Πk −Πk−1)Vk

= (I −Qak−1)(Πk −Πk−1)V.

We have the two-level decomposition

Vk = V 1
k + Vk−1.

That is, v = (I −Qak−1)(Πk − Πk−1)v +
[
Qak−1 + (I −Qak−1)Πk−1

]
v for any v ∈ Vk.

On the basis of the pair of spaces V 1
k and Vk−1 we define the preconditioner M (k)

as it was defined in Definition 11. To analyze the method we need some auxil-
iary estimates. Define v

(s)
1 = (I − Qas−1)(Πs − Πs−1)v(s) and v(s−1) = v

(s)
2 =[

Qas−1 + (I −Qas−1)Πs−1
]
v(s) starting with v(J) = v for any given v ∈ V and s = J

down to 1.
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FIG. 2. Plot of a wavelet modified HB function; m = 2.

We have for any v ∈ Vk,

((M (k) −A(k))v, v) = ((B(k)
11 −A

(k)
11 )v(k)

1 , v
(k)
1 ) + ((M (k−1) −A(k−1))v(k−1), v(k−1))

+(B(k)−1

11 A
(k)
12 v

(k)
2 , A

(k)
12 v

(k)
2 ).

This identity at first implies by induction (since M (0) = A(0)) that M (k) − A(k) is
positive semidefinite. Using it recursively, one arrives at the major inequality (cf. (8))

(26)

((M (k) −A(k))v, v) ≤ b1(A(k)
11 v

(k)
1 , v

(k)
1 ) + ((M (k−1) −A(k−1))v(k−1), v(k−1))

+(A(k)−1

11 A
(k)
12 v

(k)
2 , A

(k)
12 v

(k)
2 )

≤ b1
k∑
s=1

(A(s)
11 v

(s)
1 , v

(s)
1 ) +

k∑
s=1

(A(s)−1

11 A
(s)
12 v

(s)
2 , A

(s)
12 v

(s)
2 ).

5.4. Estimation of the deviation from the exact wavelet decomposition.
We next estimate the deviation es = v(s)−Qsv. The following recursive relation holds
(cf. Vassilevski and Wang [41]):

es−1 = [Qs−1 +Rs−1]es +Rs−1(Qs −Qs−1)v, where

Rs−1 = (Qs−1 −Qas−1)(Πs−1 −Πs).

It is not as hard to estimate the L2-norm of es. The L2-norm is denoted in what
follows by ‖.‖0. We have, for any φ ∈ Vs,

‖Rs−1φ‖0 ≤ τ‖(Πs −Πs−1)φ‖0 ≤ CRτ‖φ‖0·
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Here CR is a positive constant independent of s and J . We only remark at this point
that CR in practice can be estimated by an element-by-element analysis (with respect
to the elements of Ts−1).

Therefore,

‖es−1‖0 ≤ (1 + CRτ)‖es‖0 + CRτ‖(Qs −Qs−1)v‖0.
LEMMA 2. Assume that (a.i) and (a.ii) hold. Let λk = O(h−2

k ) = O(22k) be
an estimate of the maximum eigenvalue of the operator A(k). Assume also that τ is
sufficiently small such that

(27) CRτ ≤ q1 = const < 1;

that is,

(27′) (1 + CRτ)
1
2
≤ q =

1 + q1

2
= const < 1.

Then the following major estimate holds:

(28)
k∑
s=1

λs−1‖es−1‖20 ≤ Cτ2A(v, v) for any v ∈ Vk.

Proof. Using the fact that ek = 0 (since v ∈ Vk), by simple recurrence we obtain

‖es−1‖0 ≤ CRτ
k∑
j=s

(1 + CRτ)j−s‖(Qj −Qj−1)v‖0.

Therefore, assuming that hj = 1
2hj−1 and using (27′) and the Cauchy–Schwarz in-

equality, we get

‖es−1‖0 ≤ CRτ hs−1

k∑
j=s

(1 + CRτ)j−sh−1
s ‖(Qj −Qj−1)v‖0

= CRτ hs−1

k∑
j=s

(1 + CRτ)j−sh−1
s hjh

−1
j ‖(Qj −Qj−1)v‖0

= CRτ hs−1

k∑
j=s

(1 + CRτ)j−s
(

1
2

)j−s
h−1
j ‖(Qj −Qj−1)v‖0

≤ CRτ hs−1

k∑
j=s

qj−sh−1
j ‖(Qj −Qj−1)v‖0

≤ CRτ hs−1
1√

1− q

 k∑
j=s

qj−sh−2
j ‖(Qj −Qj−1)v‖20

 1
2

·

The latter inequality shows that
k∑
s=1

h−2
s−1‖es−1‖20 ≤ C2

Rτ
2 1

1− q

k∑
s=1

k∑
j=s

qj−sh−2
j ‖(Qj −Qj−1)v‖20

≤ C2
Rτ

2 1
(1− q)2

k∑
j=1

h−2
j ‖(Qj −Qj−1)v‖20

≤ Cτ2 1
(1− q)2A(v, v).

Here we used the estimate (a.i). Note that 1
1−q = 2

1−CRτ if we let q = 1+CRτ
2 .
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5.5. Analysis of the approximate wavelet modified HB preconditioner.
To complete the analysis of the method we must estimate the two sums in the last
line of (26).

To this end, consider v(s)
1 = v(s)− v(s−1) = (Qs−Qs−1)v+ es− es−1. Using (28),

we immediately find that the first sum in the last inequality of (26) can be estimated
as follows:

k∑
s=1

(A(s)
11 v

(s)
1 , v

(s)
1 ) ≤

k∑
s=1

λs‖v(s)
1 ‖20

≤ 3
k∑
s=1

λs
(
‖(Qs −Qs−1)v‖20 + ‖es‖20 + ‖es−1‖20

)
≤ C(‖v‖21 +A(v, v))

≤ CA(v, v).

Here we have again used the norm equivalence estimate C‖φ‖21 ≥
∑k
s=1 λs‖(Qs −

Qs−1)φ‖20 (i.e., estimate (a.i)). The final estimate that we need in (26) reads as
follows:

k∑
s=1

(A(s)−1

11 A
(s)
12 v

(s−1), A
(s)
12 v

(s−1)) ≤ C
k∑
s=1

h2
s‖A

(s)
12 v

(s−1)‖20

≤ C
k∑
s=1

h2
s‖A(s)v(s−1)‖20

≤ C
k∑
s=1

h2
s

(
‖A(s)es−1‖20 + ‖A(s)Qs−1v‖20

)
≤ C

k∑
s=1

λs−1‖es−1‖20 + C

k∑
s=1

λ−1
s ‖A(s)Qs−1v‖20

≤ CA(v, v).

Here we have used Lemma 2 (estimate (28)), the fact that the first blocks A(s)
11 are

well conditioned (that λmin[A(s)
11 ] = O(h−2

s )—note that λmax[A(s)
11 ] = O(h−2

s )), and
the major estimate from Lemma 1,

(29)
k∑
s=1

λ−1
s ‖A(s)Qs−1v‖20 ≤ CA(v, v).

The fact that A(s)
11 are well conditioned was proven in Vassilevski and Wang [41].

Estimate (29) (also proven in [41]) assumes (a.i) and (a.ii). It is straightforward,
however, to prove a suboptimal estimate without those assumptions. One has

k∑
s=1

λ−1
s ‖A(s)Qs−1v‖20 ≤

k∑
s=1

A(Qs−1v,Qs−1v) ≤ kηA(v, v).

Here η stands for the uniform A(., .)-norm bound of any of the L2-projection operators
Qs (see (22)). Therefore, we can formulate the following main result.
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THEOREM 9. The approximate wavelet modified HB multiplicative preconditioner
M (k) as defined in Definition 11 gives a spectrally equivalent preconditioner to A(k)

if the approximate L2-projections are accurate enough (e.g., such that (27) holds, the
bound of which is independent of the mesh size or J). This holds provided assumptions
(a.i) and (a.ii) hold. Without assuming (a.i) and (a.ii), M (k) is proven to be only nearly
spectrally equivalent to A(k). The preconditioner can be implemented such that one
action of M−1 = M (J)−1

requires O(n log τ−1) = O(n) arithmetic operations (since τ
is independent of J or the mesh size). Here, n = nJ is the number of the total degrees
of freedom.

5.6. Additive version of the approximate wavelet modified HB precon-
ditioner. Finally, one can consider the additive version of the approximate wavelet
modified HB preconditioner, which is defined as follows.

DEFINITION 12 (additive approximate wavelet modified HB preconditioner). Set
M

(0)
D = A(0) and for k = 1, 2, . . . , J define

M
(k)
D =



D
(k)
11 0 0

0 D
(k−1)
11 0
. . . . . . . . .

0 D
(1)
11 0

0 0 A(0)



} V 1
k

} V 1
k−1

...
} V 1

1

} V0

.

Here D(k)
11 is, for example, the diagonal part of A(k)

11 .
It was shown in Vassilevski and Wang [41] that if τ in (25) is sufficiently small,

independent of the mesh size or J , the additive version of the approximate wavelet
modified HB multilevel preconditionerM (k)

D is spectrally equivalent to the correspond-
ing solution operator A(k). Here, assumptions (a.i) and (a.ii) are again needed. We
conclude with the following result.

THEOREM 10. The additive version of the approximate wavelet modified HB mul-
tilevel preconditioner M (k)

D as defined in Definition 12 is spectrally equivalent to A(k)

if (25) holds with a sufficiently small constant τ (independent of the mesh size or
J). The method can be implemented such that one action of M−1

D = M
(J)−1

D requires
O(n log τ−1) = O(n) arithmetic operations (n = nJ is the number of the total degrees
of freedom); i.e., the method is optimal.

5.7. Concluding remarks. Implementation details together with some numer-
ical results for both the multiplicative and additive approximate wavelet modified HB
multilevel preconditioners can be found in Vassilevski and Wang [41].

We remark that related results for constructing multilevel methods based on direct
decompositions of finite element spaces can be found in Stevenson [35] and Griebel and
Oswald [20]. These methods deal with tensor product meshes and exploit 1-d wavelet
space decompositions, and therefore cannot handle more general triangulations. In
Stevenson’s [36] some progress was made toward more general meshes. The method
from Vassilevski and Wang [41] handles the general case; it applies whenever HB
decomposition of the finite element space exists.

Acknowledgments. Thanks are due to Dr. Svetozar Margenov, who critically
read a preliminary version of the paper, and also to the referees for their helpful
suggestions.
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